Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lu-Fang Ma, Bang-Tun Zhao and Li-Ya Wang*

Department of Chemistry, Luoyang Teachers College, Luoyang, Henan 471022, People's
Republic of China

Correspondence e-mail: wly@lync.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.098$
Data-to-parameter ratio $=10.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4,4'-Bipyridinium dipicrate

The asymmetric unit of the title compound, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+}$.. $2 \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$, comprises half of one 4, 4^{\prime}-bipyridinium cation and a picrate anion. The $4,4^{\prime}$-bipyridinium cation lies on an inversion center. The packing is governed by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions.

Comment

Intermolecular forces, such as hydrogen bonds and $\pi-\pi$ stacking effects, play a dominant role in molecular aggregation (Hosseini \& De Cian, 1998; Lehn, 1988; Tong et al., 1998; Ghosh \& Bharadwaj, 2004; Lu et al., 2001). Of particular interest are compounds that are capable of forming very strong hydrogen bonds (Sun et al., 2002a,b; Novak et al., 1998). $4,4^{\prime}$-Bipyridine is an excellent rigid bridging ligand and liable to have some weak intermolecular interactions, such as hydrogen bonding, with other molecules (Zhu et al., 2003; Liang et al., 2001). Many structures involving the coordination of $4,4^{\prime}$-bipyridine to metals have been studied, but less studied are the non-covalent weak interactions of $4,4^{\prime}$-bipyridine with other molecules. In view of this, we report the molecular assembly of $4,4^{\prime}$-bipyridine and picric acid in order to further understand the coordination chemistry of 4,4'-bipyridine.

(I)

The asymmetric unit of $4,4^{\prime}$-bipyridinium dipicrate, (I), comprises half of one 4,4'-bipyridinium cation arranged around an inversion center and a picrate anion (Fig. 1). The transfer of two protons results in strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the cation and the anions (Fig. 1 and Table 1).

There are also weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions (Table 1) which assure the cohesion of the crystal.

Cations and anions are arranged alternately in layers parallel to the $a b$ plane (Fig. 2).

Experimental

An ethanol solution of $4,4^{\prime}$-bipyridine $(0.0781 \mathrm{~g}, 0.5 \mathrm{mmol})$ was added dropwise to a stirred aqueous solution $(12 \mathrm{ml})$ of picric acid $(0.12 \mathrm{~g}$, 0.5 mmol) at a temperature of 323 K . The reaction mixture was then filtered and the filtrate allowed to stand for about two weeks until yellow single crystals were obtained. Analysis found (\%): C 43.04, H 2.23, N 18.30; calculated for $\mathrm{C}_{22} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{O}_{14}$ (\%): C 42.97, H 2.28, N 18.23.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$
$M_{r}=614.41$
Triclinic, $P \overline{1}$
$a=5.39(2) \AA$
$b=10.456(4) \AA$
$c=11.357(5) \AA$
$\alpha=107.554(5)^{\circ}$
$\beta=96.246(5)^{\circ}$
$\gamma=94.581(6){ }^{\circ}$
$V=600.0(4) \AA^{\circ}$

$$
M_{r}=614.41
$$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.700 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 883 \\
& \quad \text { reflections } \\
& \theta=3.2-22.7^{\circ} \\
& \mu=0.15 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, yellow } \\
& 0.32 \times 0.22 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Triclinic, $P \overline{1}$
$a=5.369(2) \AA$ 。
$b=10.456$ (4) \AA
$c=11.357$ (5) \AA
$\alpha=107.554$ (5) ${ }^{\circ}$

Data collection

Bruker SMART APEX-II CCD	2119 independent reflections
area-detector diffractometer	1486 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.017$
Absorption correction: multi-scan	$\theta_{\max }=25.0^{\circ}$
$(S A D A B S ;$ Sheldrick, 1996)	$h=-5 \rightarrow 6$
$T_{\min }=0.954, T_{\text {max }}=0.991$	$k=-12 \rightarrow 12$
3324 measured reflections	$l=-13 \rightarrow 13$

Refinement

Refinement on F^{2}

> H-atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.054 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.19 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

2119 independent reflections ns with $I>2 \sigma(I)$
$R_{\text {int }}=0.017$
$h=-5 \rightarrow 6$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 13$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.099$
$S=1.06$
2119 reflections
199 parameters

Figure 1
ORTEP-3 view (Farrugia, 1997) of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dashed lines. [Symmetry code: (i) $-x,-y,-z$.]

Figure 2
Packing diagram (CAMERON; Watkin et al., 1993), showing the arrangement of cations and anions.

This work was supported by the National Natural Science Foundation of China (No. 20471026) and the Natural Science Foundation of Henan province (No. 0311021200).

References

Bruker (2004). APEX2 and SAINT. Version 6.22. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Ghosh, S. K. \& Bharadwaj, P. K. (2004). Inorg. Chem. 43, 5180-5182.
Hosseini, M. W. \& De Cian, A. (1998). Chem. Commun. pp. 727-733.
Lehn, J. M. (1988). Angew. Chem. Int. Ed. Engl. 27, 89-112.
Liang, H., Liang, F. P., Chen, Z. L., Hu, R. X. \& Yu, K. B. (2001). J. Indian Chem. Soc. 78, 438-443.
Lu, J. Y., Norman, C., Abboud, K. A. \& Ison, A. (2001). Inorg. Chem. Соттип. 4, 459-461.
Novak, P., Sekusak, S., Vikic Topic, D. \& Popovic, Z. (1998). J. Chem. Soc. Faraday Trans. 94, 1051-1056.

organic papers

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1996). SADABS. Version 2.03. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sun, Y.-Q., Zhang, J. \& Yang, G.-Y. (2002a). Acta Cryst. E58, o904o906.

Sun, Y.-Q., Zhang, J. \& Yang, G.-Y. (2002b). Acta Cryst. E58, o1100-o1102.
Tong, M. L., Ye, B. H. \& Cai, J. W. (1998). Inorg. Chem. 37, 2645-2650.
Watkin, D. M., Pearce, L. \& Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
Zhu, N. W., Zhang, R. Q. \& Sun, T. H. (2003). Z. Kristallogr. New Cryst. Struct. 218, 341-342.

